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Abstract Homotopy perturbation method is used to extend the approximate analyt-
ical solutions of non-linear reaction equations describing enzyme kinetics for combi-
nations of parameters for which solutions obtained in previous works are not valid.
Also, by constructing a new homotopy, alternative approximate analytical expressions
for substrate, substrate-enzyme complex and product concentrations are found. These
first-order approximate solutions give more accurate results than the second-order
approximations derived in previous works.

Keywords Homotopy perturbation method · Non-linear reaction equations ·
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1 Introduction

Enzymes are biological catalysts that are fundamental in many chemical reactions that
take place in living organisms. They are very efficient and specific catalysts, as they
can speed up reactions by a factor of millions, usually reacting with only one particular
substrate or closely related substrates.

One of the most basic enzymatic reactions was first proposed by Michaelis and
Menten in [1]. In their reaction scheme, the enzyme E combines with an substrate
S to form a substrate-enzyme complex SE . The complex then breaks down into the
product P and the free enzyme. This mechanism is usually represented by

S + E
k1�

k−1
SE

k2→ E + P , (1)
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where k1, k−1 and k2 are parameters associated with the rates of reaction. The reac-
tion equations for the mechanism (1) are difficult to solve, so approximate analyti-
cal descriptions were developed. One of the most important is the quasi-steady-state
approximation, first proposed by Briggs and Haldane [2] in 1925. Laidler [3] found
that the condition for validity of the quasi-steady-state approximation is that the initial
substrate concentration [S0] should be much larger than the initial concentration of the
enzyme [E0], i.e., [E0]/[S0] � 1. Later, Segel [4] and Segel and Slemrod [5] showed
that a more general condition for the validity of the quasi-steady-state approximation
is

[E0]
[S0] + KM

� 1,

where KM = (k−1 +k2)/k1 is called the Michaelis constant. On the other hand, using
the reverse quasi-steady-state assumption, Schnell and Maini [6] analysed the case
when the enzyme is in excess, i.e., [S0]/[E0] � 1. The existence of a small parameter
allows the use of asymptotic methods, like singular perturbation analysis, to obtain
approximate solutions of the enzyme kinetics equations [7,8].

In recent years, a new asymptotic technique known as homotopy perturbation
method [9] has been used to derive new approximate solutions to reaction differential
equations in enzyme kinetics [10–14]. An advantage of the homotopy perturbation
method is that it does not depend on a small parameter to be effective.

In this work, we discuss the application of the homotopy perturbation technique to
the differential equations that describe the time evolution of the enzyme reaction (1).
We derive new analytical expressions for substrate concentration, enzyme-substrate
complex concentration and product concentration for special combinations of the
parameters for which the approximate expressions obtained in earlier works are not
valid. This is done in Sect. 3. In Sect. 4, we propose a modification in the procedure used
in the homotopy perturbation method to find alternative analytical approximations of
the enzyme kinetics equations. We show that these expressions provide more accurate
results than those obtained by other authors. The similarities and differences between
our approach and the Simple Iteration Method of [12] is also presented. Finally, Sect.
5 is devoted to the discussion of the results.

2 Basic enzyme kinetics equations

The Law of Mass Action applied to Eq. (1) results in the following system of non-linear
reaction equations

d[S]
dt

= −k1[E][S] + k−1[SE], (2)

d[E]
dt

= −k1[E][S] + (k−1 + k2) [SE], (3)

d[SE]
dt

= k1[E][S] − (k−1 + k2) [SE], (4)

d[P]
dt

= k2[SE], (5)
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where [ ] denotes concentration. The initial conditions are

[S0] = s0, [E0] = e0, [SE0] = [P0] = 0, (6)

where s0 and e0 denote the initial concentrations of substrate and enzyme, respectively.
Adding Eqs. (3)–(4) we get

d[E]
dt

+ d[SE]
dt

= 0 ⇒ [E] + [SE] = e0, (7)

which is the conservation law for the enzyme. Another conservation law is obtained
by adding Eqs. (2), (4) and (5)

d[S]
dt

+ d[SE]
dt

+ d[P]
dt

= 0 ⇒ [S] + [SE] + [P] = s0. (8)

Using Eq. (7) in Eqs. (2) and (4) to eliminate [E], we have the reduced system

d[S]
dt

= −k1e0[S] + (k1[S] + k−1) [SE], (9)

d[SE]
dt

= k1e0[S] − (k1[S] + k−1 + k2) [SE]. (10)

To nondimensionalise the system of Eqs. (9)–(10), we introduce dimensionless vari-
ables

s(τ ) = [S]
s0

, c(τ ) = [SE]
e0

, E(τ ) = [E]
e0

, P(τ ) = [P]
s0

, (11)

ε = e0

s0
, λ = k−1

k1s0
, K = k−1 + k2

k1s0
, τ = k1e0t

ε
. (12)

In terms of these variables, Eqs. (9)–(10) and Eq. (5) can be represented as

ds

dτ
= −εs + εsc + λεc, (13)

dc

dτ
= −K c + s − sc, (14)

d P

dτ
= (K − λ)εc, (15)

and the conservation Eqs. (7) and (8) take the form

E + c = 1, (16)

s + εc + P = 1. (17)
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3 Approximate solution by homotopy perturbation method

Because of the non-linearity of Eqs. (13)–(14), it is difficult to find exact solutions,
and no such solutions for arbitrary values of the parameters have been found so far.
Thus, approximate analytical methods are a valuable tool in these cases. In recent
years, homotopy perturbation method [9] has been used as an alternative approach to
traditional perturbation methods to find approximate solutions of non-linear equations
in engineering and physical science problems (see, for instance, [15] and references
therein). In the particular case of enzyme kinetics, Uma Maheswari and Rajendran [10],
and Varadharajan and Rajendran [11] used homotopy perturbation technique to find
closed analytical expressions for substrate, substrate-enzyme complex, and product
for the reaction scheme (1), while Khoshnaw [12] extended their analysis for reversible
kinetics. Also, Varadharajan and Rajendran [13] applied the homotopy perturbation
method to enzyme kinetics equations with non-mechanism-based enzyme inactivation,
and Pandi and Rajendran [14] obtained approximate analytical expressions for enzyme
reaction with cooperative behaviour.

To illustrate the basic idea of homotopy perturbation method, we consider a non-
linear differential equation in the form [15]

L(u) + N (u) − f (r) = 0, r ∈ Ω , (18)

with boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ , (19)

where L and N are, respectively, a linear and a non-linear differential operator, f (r)

is a known analytic function, B is a boundary operator and Γ is the boundary of the
domain Ω .

We construct a homotopy v(r, p) : Ω × [0, 1] → R, which satisfies

H(v, p) = (1 − p) [L(v) − L(u0)] + p [L(v) + N (v) − f (r)] = 0, (20)

or

H(v, p) = L(v) − L(u0) + pL(u0) + p [N (v) − f (r)] = 0, (21)

where p ∈ [0, 1] is an embedding parameter, while u0 is an initial approximation of
Eq. (18), which satisfies the boundary conditions. From Eq. (20) or (21) we have

H(v, 0) = L(v) − L(u0) = 0, (22)

H(v, 1) = L(v) + N (v) − f (r) = 0. (23)

Thus, when p = 0, Eq. (20) or (21) becomes a linear equation, and when p = 1 it
becomes the original non-linear equation (18). As the parameter p increases from 0 to
1, the problem L(v) − L(u0) = 0 (which is supposedly easy to solve) is continuously
deformed to the (difficult) problem L(v) + N (v) − f (r) = 0.
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According to the homotopy perturbation method, the solution of Eq. (20) or (21)
can be written as a power series in p

v = v0 + pv1 + p2v2 + · · · . (24)

Setting p = 1 results in the approximate solution of Eq. (18),

u = lim
p→1

v = v0 + v1 + v2 + · · · . (25)

To apply the preceding formalism to Eqs. (13)–(14), the following homotopy has been
constructed [10–12]

(1 − p)

(
ds

dτ
+ εs

)
+ p

(
ds

dτ
+ εs − εsc − λεc

)
= 0, (26)

(1 − p)

(
dc

dτ
+ K c

)
+ p

(
dc

dτ
+ K c − s + sc

)
= 0, (27)

or equivalently,

ds

dτ
+ εs + p (−εsc − λεc) = 0, (28)

dc

dτ
+ K c + p (−s + sc) = 0, (29)

with initial conditions s(0) = 1, c(0) = 0. Also, the functions s(τ ) and c(τ ) are
approximated by

s = s0 + ps1 + p2s2 + · · · , (30)

c = c0 + pc1 + p2c2 + · · · , (31)

Substituting Eqs. (30)–(31) into Eqs. (28)–(29) and comparing the coefficients of like
powers of p, we obtain the system of differential equations

p0 :
ds0

dτ
+ εs0 = 0, (32)

p1 :
ds1

dτ
+ εs1 − εs0c0 − λεc0 = 0, (33)

p2 :
ds2

dτ
+ εs2 − εs0c1 − εs1c0 − λεc1 = 0, (34)
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and

p0 :
dc0

dτ
+ K c0 = 0, (35)

p1 :
dc1

dτ
+ K c1 − s0 + s0c0 = 0, (36)

p2 :
dc2

dτ
+ K c2 − s1 + s0c1 + s1c0 = 0, (37)

with initial conditions

s0(0) = 1, c0(0) = 0, si (0) = 0, ci (0) = 0, i = 1, 2, . . . . (38)

Solving Eqs. (32)–(37) with the initial conditions (38), we find

s0(τ ) = e−ετ , s1(τ ) = 0, (39)

s2(τ ) =
[

1

K
− λε

(K − ε)2

]
e−ετ + λε

K − ε
τe−ετ − e−2ετ

K − ε

+ ε

K (K − ε)
e−(K+ε)τ + λε

(K − ε)2 e−K τ , (40)

and

c0(τ ) = 0, c1(τ ) = e−ετ − e−K τ

K − ε
, (41)

c2(τ ) = e−K τ

ε (K − 2ε)
− e−2ετ

(K − ε) (K − 2ε)
− e−(K+ε)τ

ε (K − ε)
. (42)

According to the homotopy perturbation method, we have

s(τ ) = lim
p→1

s0 + ps1 + p2s2 = s0 + s1 + s2, (43)

c(τ ) = lim
p→1

c0 + pc1 + p2c2 = c0 + c1 + c2. (44)

Using Eqs. (39)–(42) we can express the approximate solutions for the concentrations
of the substrate and of the enzyme-substrate complex as

s(τ ) =
[

1 + 1

K
− λε

(K − ε)2

]
e−ετ + λε

K − ε
τe−ετ − e−2ετ

K − ε

+ ε

K (K − ε)
e−(K+ε)τ + λε

(K − ε)2 e−K τ , (45)

c(τ ) = e−ετ

K − ε
− e−2ετ

(K − ε) (K − 2ε)
+

[
1

ε (K − 2ε)
− 1

K − ε

]
e−K τ

− e−(K+ε)τ

ε (K − ε)
. (46)
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The enzyme and product concentrations can be found using the conservation Eqs.
(16)–(17), respectively. The final expression for the product concentration reads

P(τ ) = 1 −
[

1

K
+ K

K − ε
− λε

(K − ε)2

]
e−ετ − λε

K − ε
τe−ετ

+ e−2ετ

K − 2ε
−

[
λε

(K − ε)2 + 1

(K − 2ε)
− ε

K − ε

]
e−K τ + e−(K+ε)τ

K
. (47)

At this point we should note that, if we calculate the product concentration using Eq.
(15), we obtain a different result, namely [11]

P(τ ) = (K − λ)ε

τ∫
0

c(u) du = (K − λ)
(
1 − e−ετ

)
K − ε

+ (K − λ)
(
e−2ετ − 1

)
2 (K − ε) (K − 2ε)

+ (K − λ)
(
1 − e−K τ

)
K (K − 2ε)

+ ε(K − λ)
(
e−K τ − 1

)
K (K − ε)

+ (K − λ)
[
e−(K+ε)τ

]
K 2 − ε2 .

(48)

From Eq. (48) we have

lim
τ→∞ P(τ ) = (K − λ)(2K + 2ε − 1)

2K (K + ε)
�= 1, (49)

so the expression (48) is not consistent with the conservation Eq. (17), since

lim
τ→∞ s(τ ) = 0, and lim

τ→∞ c(τ ) = 0. (50)

In Fig. 1 we display the curves of s, c, E and P , obtained from the numerical solution
of the system of Eqs. (13)–(15), while the dots were computed with the approximate
solutions (45)–(47). The values of the parameters are ε = 4.8, K = 4.0 and λ = 0.
These are the same values that were used in Fig. 3 of [11] (k = λ = 4.0 in their
nondimensionalisation, since they defined λ = k2/(k1s0)). It is seen that in this case,
the approximations obtained with the homotopy perturbation method are very close to
the numerical solutions. Also, in Fig. 1, the circles represent the product concentration
calculated with Eq. (48). It is clear that the product concentration obtained from the
conservation equation (17) represents a better approximation than the solution (48).

A detail about the analytical expressions derived above and that was not mentioned
in earlier works, is that Eqs. (45)–(47) apparently are not valid when K = ε, and
so Eqs. (46)–(47) when K = 2ε. Since the numerical solutions for these particular
combinations of parameters are well-behaved (see below), something must have been
missed when solving the differential Eqs. (32)–(37). In fact, the differential equations
have the form

dx

dτ
+ ax =

∑
i

ki e
−bi τ , (51)
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Fig. 1 Curves of the substrate concentration s (black), enzyme-substrate complex concentration c (green),
enzyme concentration E (red) and product concentration P (blue), for parameters ε = 4.8, K = 4.0 and
λ = 0. The curves represent the numerical solution of Eqs. (13)–(15), while dots were computed with Eqs.
(45)–(47). The circles represent the product concentration calculated with Eq. (48)

where a > 0, bi > 0 and ki are constants. As usual, to solve this equation, we multiply
it by the integrating factor eaτ

d

dτ

(
xeaτ

) =
∑

i

ki e
(a−bi )τ ⇒ x(τ ) = ce−aτ +

∑
i

ki

a − bi
e−bi τ , (52)

where c is a constant. However, if b j = a, we have

d

dτ

(
xeaτ

) = k j +
∑
i �= j

ki e
(a−bi )τ ⇒ x(τ ) = ce−aτ + k jτe−aτ +

∑
i �= j

ki

a − bi
e−bi τ .

(53)

As an example, consider the differential equation (36)

dc1

dτ
+ K c1 = e−ετ , (54)

whose solution is given by (41) if K �= ε. However, when K = ε, we obtain

c1(τ ) = τe−ετ . (55)
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Fig. 2 Curves of the substrate concentration s (black), enzyme-substrate complex concentration c (green),
enzyme concentration E (red) and product concentration P (blue), for parameters K = ε = 4 and λ =
0.25. The curves represent the numerical solution of Eqs. (13)–(15), while dots were calculated with Eqs.
(56)–(58)

Proceeding in this way, we obtain following results for the concentrations of s, c and
P , if K = ε

s(τ ) = (1 + ε)

ε
e−ετ + λε

2
τ 2e−ετ − e−2ετ

ε
− τe−2ετ , (56)

c(τ ) = −e−ετ

ε2 + τe−ετ + e−2ετ

ε2 + τe−2ετ

ε
, (57)

P(τ ) = 1 − e−ετ − ετe−ετ − λε

2
τ 2e−ετ , (58)

and, if K = 2ε

s(τ ) = [1 + 2(ε − λ)]

2ε
e−ετ + λτe−ετ + (λ − 1)

ε
e−2ετ + e−3ετ

2ε
, (59)

c(τ ) = e−ετ

ε
+ (1 − ε)

ε2 e−2ετ − τe−2ετ

ε
− e−3ετ

ε2 , (60)

P(τ )=1− [1 + 2(ε − λ)]

2ε
e−ετ −λτe−ετ + (ε − λ)

ε
e−2ετ +τe−2ετ + e−3ετ

2ε
. (61)

In Fig. 2, we compare the curves of s, c, E and P , calculated numerically, with
the approximations (56)–(58), represented by dots, for parameters K = ε = 4 and
λ = 0.25. In Fig. 3, the same quantities are shown, the dots represent Eqs. (59)–(61),
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Fig. 3 Curves of the substrate concentration s (black), enzyme-substrate complex concentration c (green),
enzyme concentration E (red) and product concentration P (blue), for parameters K = 6, ε = 3 and
λ = 0.25. The curves represent the numerical solution of Eqs. (13)–(15), while dots were calculated with
Eqs. (59)–(61)

and the parameters have values K = 6, ε = 3 and λ = 0.25. In both examples, the
analytical expressions are close to the numerical solutions.

Although the approximations derived with the homotopy perturbation method were
in good agreement with the numerical solutions in the examples presented so far, they
have a limited applicability. As an example, in Fig. 4 we display the numerical solution
and the analytical expressions of s, c, E and P for parameters ε = 2, K = 1.5 and
λ = 0.5. For times τ � 0.5, we observe a poor agreement.

4 An alternative approximate solution using homotopy perturbation method

In this Section, we propose a small modification in the procedure used in the homo-
topy perturbation method and find alternative analytical approximations of the enzyme
kinetics equations. The modification is somewhat similar to the Simple Iteration
Method proposed by Khoshnaw [12].

Instead of using the homotopy given by Eqs. (28)–(29), we propose

ds

dτ
+ εs − λεc − pεsc = 0, (62)

dc

dτ
+ K c − s + psc = 0, (63)

With this homotopy, we retain all linear terms that appear in the differential equations
(13)–(14) when p = 0. Substituting equations (30)–(31) into (62)–(63) and comparing
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Fig. 4 Curves of the substrate concentration s (black), enzyme-substrate complex concentration c (green),
enzyme concentration E (red) and product concentration P (blue), for parameters ε = 2, K = 1.5 and
λ = 0.5. The curves represent the numerical solution of Eqs. (13)–(15), while dots were calculated with
Eqs. (45)–(47)

the coefficients of like powers of p, we obtain for the coefficient p0

ds0

dτ
+ εs0 − λεc0 = 0, (64)

dc0

dτ
+ K c0 − s0 = 0, (65)

For convenience, we rewrite the system (64)–(65) as a second order ODE

d2c0

dτ 2 + (ε + K )
dc0

dτ
+ ε(K − λ)c0 = 0, (66)

with initial conditions

c0(0) = 0,
dc0(0)

dτ
= s0(0) − K c0(0) = 1. (67)

The solution is

c0(τ ) = eα1τ − eα2τ

A
, (68)

with

α1,2 = −ε + K

2
± A

2
, A =

√
(ε − K )2 + 4ελ. (69)
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The solution for s0 can be found from Eq. (65)

s0(τ ) = (K − ε + A)

2A
eα1τ − (K − ε − A)

2A
eα2τ . (70)

For the coefficient p1 we have the equations

ds1

dτ
+ εs1 − λεc1 = εs0c0, (71)

dc1

dτ
+ K c1 − s1 = −s0c0, (72)

which are equivalent to the non-homogeneous second order ODE

d2c1

dτ 2 + (ε + K )
dc1

dτ
+ ε(K − λ)c1 = (ε + K )s0c0 − ελc2

0 − s2
0 , (73)

with initial conditions

c1(0) = 0,
dc1(0)

dτ
= −K c1(0) + s1(0) − s0(0)c0(0) = 0. (74)

The solution for c1 reads

c1(τ ) = [(K − ε)(K + ε − A) + 2ε(K − λ)]

εA(K − λ)(K + ε + 3A)
eα1τ

− [(K − ε)(K + ε + A) + 2ε(K − λ)]

εA(K − λ)(K + ε − 3A)
eα2τ + 2(K − ε + A)

A2(K + ε − 3A)
e2α1τ

+ 2(K − ε − A)

A2(K + ε + 3A)
e2α2τ + (ε2 − K 2)

εA2(K − λ)
e−(K+ε)τ , (75)

and from Eq. (72) we get s1

s1(τ ) = [(K − ε)(2K − ε − 3λ + A) + A(K − λ)]

A(K − λ)(K + ε + 3A)
eα1τ

− [(K − ε)(2K − ε − 3λ − A) − A(K − λ)]

A(K − λ)(K + ε − 3A)
eα2τ

+ [(K −2ε)(K −ε + A)+2ελ]

A2(K +ε−3A)
e2α1τ + [(K − 2ε)(K − ε − A) + 2ελ]

A2(K + ε + 3A)
e2α2τ

+ (ε + λ)(K − ε)

A2(K − λ)
e−(K+ε)τ . (76)
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Taking the limit p → 1, we obtain

s(τ ) = s0 + s1

=
[

K − ε + A

2
+ (K − ε)(2K − ε − 3λ + A) + A(K − λ)

(K − λ)(K + ε + 3A)

]
eα1τ

A

−
[

K − ε − A

2
+ (K − ε)(2K − ε − 3λ − A) − A(K − λ)

(K − λ)(K + ε − 3A)

]
eα2τ

A

+ [(K −2ε)(K −ε + A)+2ελ]

A2(K + ε − 3A)
e2α1τ + [(K − 2ε)(K − ε − A) + 2ελ]

A2(K + ε + 3A)
e2α2τ

+ (ε + λ)(K − ε)

A2(K − λ)
e−(K+ε)τ , (77)

and

c(τ ) = c0 + c1 =
[

1 + (K − ε)(K + ε − A) + 2ε(K − λ)

ε(K − λ)(K + ε + 3A)

]
eα1τ

A

−
[

1 + (K − ε)(K + ε + A) + 2ε(K − λ)

ε(K − λ)(K + ε − 3A)

]
eα2τ

A

+ 2(K − ε + A)

A2(K + ε − 3A)
e2α1τ + 2(K − ε − A)

A2(K + ε + 3A)
e2α2τ

+ (ε2 − K 2)

εA2(K − λ)
e−(K+ε)τ . (78)

The approximate expression for the product concentration reads

P = 1 − s − εc = 1 − [(K + ε + A)(K + ε + 3A) + 2(3K − ε + A)]

2A(K + ε + 3A)
eα1τ

+ [(K + ε − A)(K + ε − 3A) + 2(3K − ε − A)]

2A(K + ε − 3A)
eα2τ

− [K (K − ε + A) + 2ελ]

A2(K + ε − 3A)
e2α1τ − [K (K − ε − A) + 2ελ]

A2(K + ε + 3A)
e2α2τ

+ (K − ε)

A2 e−(K+ε)τ . (79)

In Fig. 5a–d we show the numerical solution (solid curves) and the analytical
expressions of s, c, E and P for parameters ε = 2, K = 1.5 and λ = 0.5 (the
same values as were used in Fig. 4). The dots were calculated with Eqs. (77)–(79),
and the dashed curves represent the approximate expressions (45)–(47). It is seen
that, unlike the solutions calculated in Sect. 3, the analytical results obtained with our
modified homotopy agree well with the numerics. Is is also important to note that
the approximations (77)–(79) are first-order solutions with respect to the embedding
parameter p, while solutions (45)–(47) are second-order approximations.
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Fig. 5 Curves of a the substrate concentration s, b enzyme-substrate complex concentration c, c enzyme
concentration E and d product concentration P , for parameters ε = 2, K = 1.5 and λ = 0.5. The solid
curves represent the numerical solution of Eqs. (13)–(15), dots were calculated with solutions (77)–(79),
while the dashed curves represent the approximations (45)–(47)

We must consider separately the case A = 0, which only happens if K = ε and
λ = 0. In this case, the general solution of the ODE (66) with initial conditions (67) is

c0(τ ) = τe−ετ . (80)

Repeating the calculations for s0(τ ), c1(τ ) and s1(τ ), we arrive at the following results

s(τ ) = 1 + ε

ε
e−ετ − e−2ετ

ε
− τe−2ετ , (81)

c(τ ) = − 3

ε2 e−ετ + 1 + ε

ε
τe−ετ + 3

ε2 e−2ετ + 2

ε
τe−2ετ , (82)

P(τ ) = 1 + 2 − ε

ε
e−ετ − (1 + ε)τe−ετ − 2

ε
e−2ετ − τe−2ετ . (83)

The solution for s(τ ) is the same as Eq. (56) with λ = 0.
In Fig. 6a–d we present the numerical solution (solid curves) and the analytical

expressions of s, c, E and P for parameters K = ε = 1 and λ = 0. The dots
were calculated with Eqs. (81)–(83), and the dashed curves represent the approxi-
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Fig. 6 Curves of a the substrate concentration s, b enzyme-substrate complex concentration c, c enzyme
concentration E and d product concentration P , for parameters K = ε = 1 and λ = 0. The solid curves
represent the numerical solution of Eqs. (13)–(15), dots were calculated with solutions (81)–(83), while the
dashed curves represent the approximations (56)–(58)

mate expressions (56)–(58). Apart from the curves for the substract concentration, our
approximate solutions are much more accurate than those from Sect. 3.

Finally, we comment some similarities and differences between our alternative
homotopy construction and the Simple Iteration Method proposed by Khoshnaw [12].
In his procedure, which is in fact a method of successive approximations, the solution
of the system of Eqs. (13)–(14) is approximated by

ds(n+1)

dτ
= −εs(n+1) + λεc(n+1) + εs(n)c(n), (84)

dc(n+1)

dτ
= −K c(n+1) + s(n+1) − s(n)c(n), (85)

for n = 0, 1, 2, . . .. In the first step, take s(0) = 1, c(0) = 0 and solve for s(1), c(1). This
results in the same system as Eqs. (64)–(65). In the second step, take n = 1 and solve
for s(2), c(2) using the solutions of s(1), c(1). This is equivalent to the system of Eqs.
(71)–(72). However, there is a crucial difference between both methods. In the Simple
Iteration Method, each iteration s(n), c(n) is taken as a better approximation to the true
solution, while in our homotopy approximation method, the final approximation is the
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sum of the “iterates”. Moreover, if we take the coefficients of p2 in our alternative
homotopy, the next system of equations to solve is

ds2

dτ
+ εs2 − λεc2 = εs0c1 + εs1c0, (86)

dc2

dτ
+ K c2 − s2 = −s0c1 − s1c0, (87)

which is different from solving the system (84)–(85) for s(3), c(3).

5 Discussion

Using homotopy perturbation method, we extended the approximate analytical solu-
tions of the differential equations describing the time evolution of the enzyme reac-
tion (1) to include cases for which the results of earlier works were not valid. We
also proposed a modification of the traditional homotopy equations to derive alter-
native analytical approximations of the enzyme kinetics equations. These solutions,
which are first-order approximations with respect to the embedding parameter p, pro-
vide more accurate results than the second-order approximate expressions obtained by
other authors for the same values of the parameters. We also commented the similari-
ties and differences between our approach and the Simple Iteration Method proposed
by Khoshnaw [12].

Although our alternative approximate solutions give better results, we found that
they deviate progressively from the numerical solutions as the value of the parameter
ε becomes smaller. Thus, they also have a limited applicability. One may argue that,
to obtain better approximations, one only needs to include higher order terms in the
homotopy perturbation expansion. However, the amount of calculations and the size
of the resulting expressions increases very fast. Ideally, we would like to have an
approximate analytical solution that could be, at the same time, simple and accurate
for a wide range of values of the parameters. This poses an interesting question: can
one construct a non-trivial homotopy for the enzyme kinetics equations (13)–(14) that
yield even better approximate solutions and that are simpler than those already found?
One may also not forget that we considered only one of the most basic enzymatic
reaction mechanisms. In living organisms, much more complex reactions involving
enzymes are the rule rather than the exception, and their kinetics is described by more
complicated systems of differential equations that are even harder to analyse.
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